Higher-rank Graph C∗-algebras: an Inverse Semigroup and Groupoid Approach
نویسنده
چکیده
We provide inverse semigroup and groupoid models for the Toeplitz and Cuntz-Krieger algebras of finitely aligned higher-rank graphs. Using these models, we prove a uniqueness theorem for the Cuntz-Krieger algebra.
منابع مشابه
C∗-ACTIONS OF r-DISCRETE GROUPOIDS AND INVERSE SEMIGROUPS
Many important C∗-algebras, such as AF-algebras, Cuntz-Krieger algebras, graph algebras and foliation C∗-algebras, are the C∗-algebras of r-discrete groupoids. These C∗-algebras are often associated with inverse semigroups through the C∗-algebra of the inverse semigroup [HR90] or through a crossed product construction as in Kumjian’s localization [Kum84]. Nica [Nic94] connects groupoid C∗-algeb...
متن کاملInverse Semigroups and Combinatorial C*-algebras
We describe a special class of representations of an inverse semigroup S on Hilbert's space which we term tight. These representations are supported on a subset of the spectrum of the idempotent semilattice of S, called the tight spectrum, which is in turn shown to be precisely the closure of the space of ultra-filters, once filters are identified with semicharacters in a natural way. These rep...
متن کاملInverse semigroups and the Cuntz-Li algebras
In this paper, we apply the theory of inverse semigroups to the C∗-algebra U [Z] considered in [Cun08]. We show that the C∗-algebra U [Z] is generated by an inverse semigroup of partial isometries. We explicity identify the groupoid Gtight associated to the inverse semigroup and show that Gtight is exactly the same groupoid obtained in [CL10].
متن کاملCayley Color Graphs of Inverse Semigroups and Groupoids
The notion of Cayley color graphs of groups is generalized to inverse semigroups and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive groupoid is isomorphic to the original groupoid.
متن کاملNuclearity of Semigroup C*-algebras and the Connection to Amenability
We study C*-algebras associated with subsemigroups of groups. For a large class of such semigroups including positive cones in quasi-lattice ordered groups and left Ore semigroups, we describe the corresponding semigroup C*algebras as C*-algebras of inverse semigroups, groupoid C*-algebras and full corners in associated group crossed products. These descriptions allow us to characterize nuclear...
متن کامل